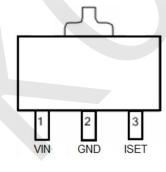
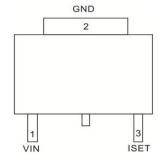
产品概述

RZC9930 是一款单通道线性恒流 LED 驱动芯片,应用于 LED 照明领域。芯片集成高压启动电路以及高压功率 MOS 管,最高耐压达 500V,可以直接接在 110Vac 或 220Vac 整流之后,应用电路非常简单,无需电感,系统工作时没有 EMI 的问题。芯片使用专有的线性恒流控制技术,使得芯片之间的电流精度控制在 5%以内。

芯片具有 LED 开路保护、LED 短路保护以及温度补偿功能,使得应用时系统具有最大程度的安全性。RZC9930 采用 S0T89-3L/T0252-3L 封装。


功能特性

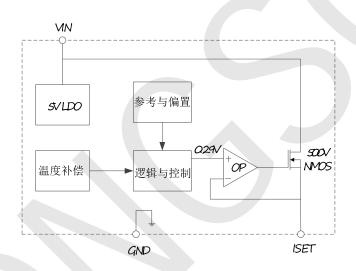
- 集成 500V 高压启动电路以及高压功率 MOS
- 无需电感
- 输入加电容,没有 100Hz 频闪
- 输入不加电容, PF>0.9
- 没有 EMI 问题
- 效率: >0.85
- 具有 LED 开路以及 LED 短路保护
- 120℃高温时 LED 电流温度补偿
- 最大输出电流 90mA
- 单颗最大输出功率 18W (T0252)
- 封装形式: S0T89-3L/T0252-2

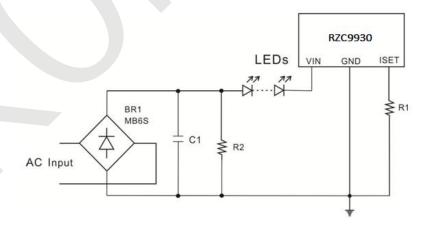

应用

- LED 日光灯管
- LED 球泡灯
- LED 吸顶灯

管脚分布

S0T89-3


T0252-2


管脚定义

管脚序号	管脚名称	管脚描述
1	VIN	电源输入恒流输出通道
2	GND	芯片地
3	ISET	输出电流设置端

内部框图

典型应用电路

RZC9930

最大绝对值范围

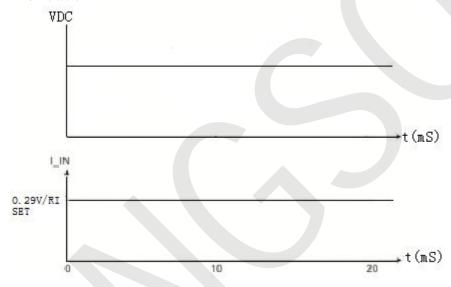
参数	符号	最小值	最大值	单位
电源电压	$V_{\scriptscriptstyle \mathrm{IN}}$	-0.3	500	V
最大输出电流	${ m I}_{ ext{MAX}}$		90mA	mA
最大输出功率	P _{MAX}		18	W
工作环境温度	T_{0P}	-40	85	$^{\circ}$
工作结温范围	$T_\mathtt{J}$	-40	150	$^{\circ}$
存储温度范围	$T_{ ext{STG}}$	-55	150	$^{\circ}$
ESD	HBM	20	00	V

推荐工作范围

参数	符号	参数范围	单位
输入市电电压	V _{AC}	AC85~AC265	V

电性参数(T_a=25℃, 除非另有说明)

参数	符号	测试条件	最小值	典型值	最大值	单位
VIN耐压	V _{IN}		500			V
芯片工作电流	$I_{\scriptscriptstyle \mathrm{IN}}$	V _{IN} =20	170	200	240	uA
ISET 电压	V _{ISET}	$R_{\text{ISET}} = 10 \Omega$, $V_{\text{IN}} = 20 V$	276	290	304	mV
电流负温度补偿起始点	T_{Sc}			120		$^{\circ}$
输出平均电流	$I_{ ext{out}}$				90	mA



应用说明

输入电容

RZC9930应用时输入可以加电容也可以不加电容,若不加电容,RZC9930 功率因数一般大于0.9,在半个 AC 周期内,当输入电压低于LED总电压时, LED电流为零,当输入电压高于LED总电压时, LED点亮, LED 点亮期间电流为 0.29V/RISET,不加电容工作时经整流后电压和输入电流如下所示:

若输入加电容,在整个AC周期内,LED电流恒定,加电容工作时经整流滤波后电压和输入电流如下所示:

加电容应用时,LED 电流为恒定值,输出功率为 $V_{LED} \times 0.29 V/R_{ISET}$; 不加电容工作时,输出功率为LED总电压与LED 平均电流乘积,因为不加电容时LED交流导通,做到同样的功率,虽然平均电流与加电容时一样,但是导通时的瞬时电流较大,约为平均电流的2倍,所以对LED灯珠要求较高,所以对于RZC9930建议加电容使用。

输出电压确定

RZC9930 是线性恒流LED驱动,应用时必须保证LED总电压低于输入电压,在220V交流输入时,建议输出LED电压在220V~260V之间,110V交流输入时,建议输出LED电压在90V~130V之间。如果总电压大于输入整流后的电压,那么LED将不亮,同时因为输入电压和LED总电压的差值全部被芯片吸收,所以总电压也不能太低,如果太低,同样的输入电压会导致芯片上压降太大,在整个工作电压范围内芯片都工作在温度补偿模式,输出电流也达不到所设定电流值。综上所述,应根据实际需要功率和实际输入电压情况,选择LED总电压。调试时如果输入电压在整个输入范围内升高,功率升高较多,那么表明LED总电压有点

RZC9930

偏高,可以适当降低LED电压;如果输入电压在整个输入范围内升高,功率降低较多,那么表明 LED 总电压有点偏低,导致芯片承受电压较高而进入温度补偿模式,可以适当增加 LED电压,从而减小芯片所承受的电压。

工作效率

加电容应用时,在保证输入滤波电容足以使输出 LED电流在一个AC周期内都不会下降的情况下,电路工作效率计算如下:

$$oldsymbol{\eta} = rac{P_{ extit{LED}}}{P_{ extit{IN}}} = rac{V_{ extit{LED}} imes I_{ extit{LED}}}{V_{ extit{IN}} imes I_{ extit{IN}}} pprox rac{V_{ extit{LED}}}{V_{ extit{IN}}}$$

V_{IN} 是交流输入经整流滤波后的DCBUS电压, V_{ID}是输出LED的总电压。

若不加电容应用,输出功率为 LED总电压与 LED平均电流乘积,LED平均电流由仪器测出,LED总电压为半个AC周期LED导通时段实际电流大小对应的LED电压,再测出输入功率,即可得到效率。

温度补偿

RZC9930 内部集成了温度反馈环路,工作时,如果芯片内部的温度升高到120℃,工作电流会随着芯片的温度升高而降低, 从而减小系统功耗,降低温升. 由于温度反馈控制,IC工作温度最终会稳 定在120℃~140℃之间的某个值。该功能保障高温时没有损坏IC的风险,延长器件使用寿命。

工作电流设定

加电容时,工作电流可以通过设定ISET引脚的电阻来设定,关系如下式:

$$I_{\mathit{LED}} = \frac{V_{\mathit{LSET}}}{R_{\mathit{LSET}}} = \frac{0.29V}{R_{\mathit{LSET}}}$$

这里 V_{ISET} 是ISET引脚的电压。

若不加电容,大概按照以下公式得到初始R_{ISEI}电阻后,再根据实际测试功率对R_{ISEI}电阻进行调试,直到达到需要的输出电流与功率:

$$I_{\mathit{LED}} = \frac{V_{\mathit{ISET}}}{2R_{\mathit{ISET}}} = \frac{0.29V}{2R_{\mathit{ISET}}}$$

应用建议

- 1. 为避免较高浪涌电压或短路情况发生,建议输入加保险丝以及压敏电阻;
- 2. RZC9930单颗最大功率为18W 左右,如果需要更大的功率,可以用两颗或多颗并联驱动。
- 3. RZC9930 的输出电压需根据输入电压来确定,所以不适合做宽电压应用,同样也不推 荐使用填谷电路进行功率因数校正。

4. 交流 220V 输入条件下不同输出功率时 IC 与电容选择参考表:

POUT≤12W	12W< POUT≤18W	18W< POUT≤24W	24W< POUT≤36W
S0T89-3	T0252-2	S0T89-3	T0252-2
1	1	2	2
$4.7 \mathrm{uF} \sim 10 \mathrm{uF}$	15uF	22uF	33uF
	S0T89-3	S0T89-3 T0252-2	S0T89-3 T0252-2 S0T89-3 1 1 2

注: 需要更大功率时可以使用3颗或以上RZC9930

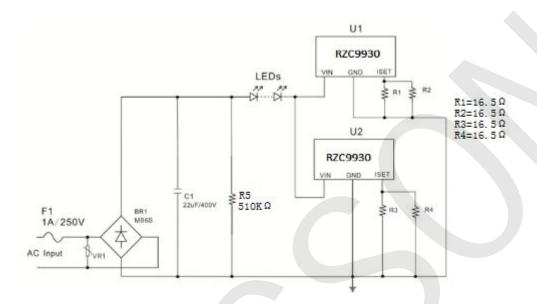
(单颗芯片,一般球泡使用,89-3是7W以内,T0252是12W)

典型应用方案

10W 应用

参数	范围
输入电压	AC180V~265V
LED 电压	260V
LED 电流	36mA
输出功率	10W
效率	90% @220V
PF	0. 5

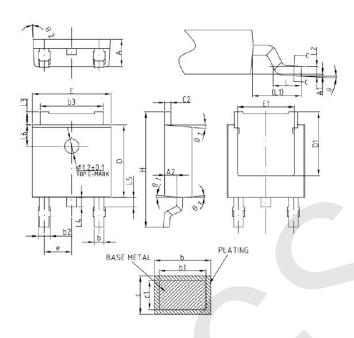
实际使用中R1和R2选择需要尽量一致,确保分流均匀,性能更加稳定。

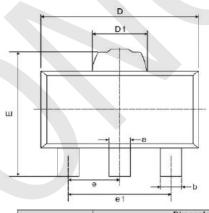

20W 应用 (两颗 RZC9930 并联)

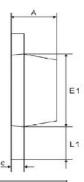
参数	范围
输入电压	AC180V~265V
LED 电压	260V
LED 电流	72mA

Version:1.0

输出功率	20W
效率	90% @220V
PF	0. 5


实际使用中R1和R2选择需要尽量一致,确保分流均匀,性能更加稳定。


封装信息


T0252-2

SYMBOL	MIN	NOM	MAX
A	2.20	2.30	2.38
A1	0		0.10
A2	0.90	1.00	1.10
b	0.77	-	0.89
b1	0.76	0.81	0.86
b2	0.77	-	1.10
b3	5.23	5.33	5.43
C	0.47	-	0.60
c1	0.46	0.51	0.56
c2	0.47	_	0.60
D	6.00	6.10	6.20
D1	5.25		-
E	6.50	6.60	6.70
E1	4.70	-	4
e		2.28BSC	
H	9.80	10.10	10.40
L	1.40	1.50	1.70
L1		2.90REF	
L2		0.51BSC	
L3	0.90		1.25
L4	0.60	0.80	1.00
L5	0.90	_	1.50
L6		1.80REF	
0	0"	-	8"
0.1	3*	5.	7
02	1.	3.	5*

S0T89-3L

Cts a 1	Dimensions (mm)			
Symbol	Min	Nom	Max	
A	1.40	1.50	1.60	
b	0.38		0.47	
С	0.40		0.45	
а	0.46	1 - 2	0.55	
D	4.30	4.50	4.71	
D1		1.70 REF		
E	4.00	4.20	4.40	
E1.	230	2.50	2.70	
9	1.500 REF			
e1	2.90	-	3.10	
L1	0.80	1.00	1.20	